Nuestro viaje se acerca al final... Hoy es nuestra última parada "Ciudad de Esfera" Nos cuentan que la esfera es el cuerpo geométrico más importante de Espaciolandia, tanto que ese planeta, al igual que el nuestro, es un esfera gigante y que mundo que nos rodea está repleto de esferas: balones, pelotas, en la arquitectura, lupas, gafas...
Lo primero es definir que es una esfera. Pues según el diccionario la es esfera es un cuerpo geométrico limitado por una superficie curva cerrada cuyos puntos equidistan de uno interior llamado centro de la esfera.
La esfera se genera haciendo girar una semicírculo alrededor de un diámetro y la superficie esférica al girar una semicircunferencia alrededor de un diámetro.
Así que también podemos decir que la esfera es la región del espacio que se encuentra en el interior de una superficie esférica. Para que te hagas una idea, es como una naranja, la superficie esférica sería la cáscara y la esfera los gajos de la naranja.
Así que también podemos decir que la esfera es la región del espacio que se encuentra en el interior de una superficie esférica. Para que te hagas una idea, es como una naranja, la superficie esférica sería la cáscara y la esfera los gajos de la naranja.
- Centro: Punto interior que equidista de cualquier punto de la superficie de la esfera.
- Radio: Distancia del centro a un punto de la superficie de la esfera.
- Cuerda: Segmento que une dos puntos de la superficie esférica.
- Diámetro: Cuerda que pasa por el centro. El diámetro es dos veces el radio.
- Polos: Son los puntos del eje de giro que quedan sobre la superficie esférica.
Para calcular la superficie del resto de poliedros y cuerpos de revolución que hemos visto hasta ahora lo que hacíamos era hacer su desarrollo plano y a partir de él obtener la superficie, pero con la esfera tenemos un problema...¡No podemos desarrollarla sobre el plano más que por una aproximación! ¿Entonces cómo podemos calcular su superficie? ¿Y su volumen? ¿Se te ocurre alguna idea?
Vamos a imaginar una esfera envuelta por un cilindro que se ajusta por completo a ella. Es decir, nos imaginamos un cilindro de radio R y altura 2R
Pues bien, ¡el área de la esfera es igual que el área lateral de ese cilindro!
Pues bien, ¡el área de la esfera es igual que el área lateral de ese cilindro!
A ESFERA=A LATERAL DEL CILINDRO=2πR·2R=4πR2
Ahora vamos a imaginarnos que llenamos el espacio que no está ocupado en el cilindro con agua... Si sacamos la esfera y nos fijamos en la cantidad de agua que hay, veremos que sólo ocupa la tercera parte del cilindro.. Es decir, ¡la esfera sólo ocupa las dos terceras partes del volumen del cilindro que la contiene!
Esta relación entre la esfera y el cilindro que la envuelve es muy interesante, porque nos permite calcular también de forma sencilla porciones de la esfera limitadas por planos paralelos.
Pues esto que ahora nos parece tan fácil fue el descubrimiento matemático más importante de Arquímedes, hasta tal punto que una esfera y un cilindro fueron colocados encima de su tumba cumpliendo su voluntad.
Como todo esto es un poco complicado de recordar, decidí comprarme una pequeña guía para tener siempre muy claras las ideas...
Y demás también me compré unos pasatiempos muy divertidos para hacer de camino a casa y que le voy a entregar a mi profe de mates cuando vuelva para que me los corrija.
V ESFERA=2/3 V CILINDRO=2/3·πR2·2R=4/3 πR3
Esta relación entre la esfera y el cilindro que la envuelve es muy interesante, porque nos permite calcular también de forma sencilla porciones de la esfera limitadas por planos paralelos.
Pues esto que ahora nos parece tan fácil fue el descubrimiento matemático más importante de Arquímedes, hasta tal punto que una esfera y un cilindro fueron colocados encima de su tumba cumpliendo su voluntad.
Como todo esto es un poco complicado de recordar, decidí comprarme una pequeña guía para tener siempre muy claras las ideas...
Y demás también me compré unos pasatiempos muy divertidos para hacer de camino a casa y que le voy a entregar a mi profe de mates cuando vuelva para que me los corrija.